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Abstract

Standardizing the empirical distribution function yields a statistic with norm

square that matches the chi-square test statistic. To show this one may use the

covariance matrix of the empirical distribution which, at any finite set of points, is

shown to have an inverse which is tridiagonal. Moreover, a representation of the

inverse is given which is a product of bidiagonal matrices corresponding to a repre-

sentation of the standardization of the empirical distribution via a linear combination

of values at two consecutive points. These properties are discussed also in the context

of minimum distance estimation.
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1 Introduction

Let X1, X2, . . . , Xn be independent real–valued random variables with distribution function

F . Let Fn be the empirical distribution function Fn(t) = 1
n

∑n
i=1 1{Xi≤t} and let

√
n(Fn(t) − F (t)), t ∈ T ,

be the centered empirical process evaluated at a set of points T ⊂ R. It is familiar that when

F is an hypothesized distribution and T = R the maximum of the absolute value of this

empirical process corresponds to the Kolmogorov–Sminov test statistic, the average square

corresponds to the Cramer-Von Mises test statistic and the average square with marginal

standardization using the variance equal to F (t)(1 − F (t)) produces the Anderson-Darling

statistics (average with the distribution F ) (see Anderson (1952)). The covariance of the

empirical process takes the form 1
n
F (t)(1 − F (s)) for t ≤ s. For finite T let V denote

the corresponding symmetric covariance matrix of the column vector
√

n(Fn − F ) with

entries
√

n(Fn(t) − F (t)), t ∈ T . A finite T counterpart to the Anderson–Darling statistic

is n(Fn − F )T (Diag(V ))−1(Fn − F ), which uses only the diagonal entries of V . Complete

standardization of the empirical distribution restricted to T has been put forward in Benšić

(2014) leading to the distance

n(Fn − F )TV −1(Fn − F ), (1)

which is there analysed as a generalized least squares criterion for minimum distance pa-

rameter estimation. It fits also in the framework of the generalized method of moments

(Benšić (2015)). The motivation, familiar from regression, is that the complete standard-

ization produces more efficient estimators.

The purpose of the present work is to show statistical simplifications in the generalized

least squares criterion. In particular, we show that the expression (1) is precisely equal to
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the chi-square test statistic

n
∑

A∈π

(Pn(A) − P (A))2

P (A)
, (2)

where π is the partition of R into the k + 1 intervals A formed by consecutive values

T = {t1, . . . , tk}, where A1 = (−∞, t1], A2 = (t1, t2], . . . , Ak = (tk−1, tk] and Ak+1 = (tk, ∞).

Here Pn(Aj) = Fn(tj) − Fn(tj−1) = 1
n

∑n
i=1 1{Xi∈Aj} and P (Aj) = F (tj) − F (tj−1) with

F (−∞) = Fn(−∞) = 0 and F (∞) = Fn(∞) = 1.

Moreover, we show that V −1 takes a tridiagonal form with 1/P (Aj) + 1/P (Aj+1) for

the (j, j) entries on the diagonal; −1/P (Aj), for the (j − 1, j) entries and −1/P (Aj+1) for

the (j + 1, j) entries and 0 otherwise.

We find an explicit standardization

Zj =
Fn(tj+1)F (tj) − Fn(tj)F (tj+1)

cn,j

, j = 1, . . . , k.

These random variables have mean 0 and variance 1 (with cn,j =
√

F (tj)F (tj+1)P (Aj+1)

n
) and

they are uncorrelated for j = 1, . . . , k. Moreover, the sum of squares

k
∑

j=1

Z2
j (3)

is precisely equal to the statistic given in expressions (1) and (2). It corresponds to a

bidiagonal Cholesky decomposition of V −1 as BτB with B given by −F (tj+1)/cn,j for

the (j, j) entries, F (tj)/cn,j for the (j, j + 1) entries and 0 otherwise, yielding the vector

Z = B(Fn − F ), where F = (F (t1), . . . , F (tk))τ , as a full standardization of the vector

Fn = (Fn(t1), . . . , Fn(tk))τ . The Zj may also be written as

Zj =
Pn(Aj+1)F (tj) − Fn(tj)P (Aj+1)

cn,j

(4)

so its marginal distribution (with an hypothesized F ) comes from the trinomial distribution

of (nFn(tj−1), nPn(Aj)). These uncorrelated Zj, though not independent, suggest approxi-
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mation to the distribution of
∑

j
Z2

j from convolution of the distributions of Z2
j rather than

the asymptotic chi-square.

Nevertheless, when t1, . . . , tk are fixed, it is clear by the multivariate central limit theo-

rem (for the standardized sum of the i.i.d. random variables comprising Pn(Aj+1) and Fn(tj)

from (4)) that the joint distribution of Z = (Z1, . . . , Zk)τ is asymptotically Normal(0, I),

providing a direct path to the asymptotic chi-square(k) distribution of the statistic given

equivalently in (1), (2), (3).

There are natural fixed and random choices for the points t1, . . . , tk. A natural fixed

choice is to use k−quantiles of a reference distribution. If F is an hypothesized continuous

distribution , such quantiles can be chosen such that P (Aj) = F (tj) − F (tj−1) = 1/(k + 1).

A natural random choice is to use empirical quantiles tj = X(nj) with 1 ≤ n1 < n2 <

. . . < nk ≤ n. If k + 1 divides n the nj may equal jn/(k + 1), for j = 1, . . . , k. With

empirical quantiles it is the F (tj) = F (X(nj)) that are random, having the same distribution

as uniform order statistic with mean Rj = nj/(n + 1) and covariance Vj,l/(n + 1) where

Vj,l = Rtj
(1 − Rtl

) for j ≤ l. Once again we find that (F − R)τV −1(F − R), where

R = (R1, . . . , Rk)τ , takes the form of a chi-square test statistic and the story is much the

same. The Zj are now multiples of Rj−1F (X(nj)) − RjF (X(nj−1)) which are again mean 0,

variance 1 and uncorrelated. The main difference in this case is that their exact distribution

comes from the Dirichlet distribution of (F (X(nj−1)), (F (X(nj)) − F (X(nj−1))) rather than

from the multinomial.

The form of the V −1 with bidiagonal decomposition BτB and the representation of

the norm square of the standardized empirical distribution (1) as the chi-square test statis-

tic (2) provides simplified interpretation, simplified computation and simplified statistical

analysis. For interpretation, we see that when choosing between tests based on the cumu-

lative distribution (like the Anderson–Darling test) and tests based on counts in disjoint

4



cells, the choice largely depends on whether one wants the benefit of the more complete

standardization leading to the chi-square test. For computation, we see that generalized

least squares simplifies due to the tridiagonal form.

As for simplification of statistical analysis, consider the case of a parametric family of

distribution function Fθ with a real parameter θ. The generalized least squares procedure

picks θ̂ = θ̂k,n to minimize (Fn − Fθ)
τV −1(Fn − Fθ), where V is the covariance matrix

evaluated at a consistent estimator of the true θ0.

For a fixed set of points t1, . . . , tk it is known (Benšić (2015)) that lim
n

[nVar(θ̂k,n)] has

reciprocal GτVθ0
G where G is the vector − ∂

∂θ
Fθ evaluated at the true parameter value

θ = θ0. Using the tridiagonal inverse we show that this GτV −1
θ0

G simplifies to

∑

A∈π

Pθ0
(A)(E[S(X)|A)])2, (5)

where S(X) = ∂
∂θ

log f(X|θ) is the score function evaluated at θ = θ0 which we interpret

as a Riemann–Stieltjes discretization of the Fisher information E[S2(X)]. This Fisher

information arises in the limit of large k.

2 Common Framework

Let r1, r2, . . . , rk+1 be random variables with sum 1, let ρ1, ρ2, . . . , ρk+1 be their expecta-

tions, and let

Rj =
j
∑

i=1

ri and Rj =
j
∑

i=1

ρi

be their cumulative sums. We are interested in the differences Rj −Rj. Suppose that there

is a constant c = cn such that

Cov(Rj, Rl) =
1

c
Rj(1 − Rl) =

1

c
Vj,l (6)
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for j ≤ l. Let R = (R1, . . . , Rk)τ and R = (R1, . . . , Rk)τ . We explore the relationship

between (R − R)τV −1(R − R) and
k+1
∑

j=1

(rj−ρj)2

ρj
and the structure of the inverse V −1 as

well as construction of a version of B(R−R) with uncorrelated entries, and V −1 = BτB.

We have the following cases for X1, . . . , Xn i.i.d. with distribution function F .

Case 1: With fixed t1 < · · · < tk and t0 = −∞, tk+1 = ∞ we set

Rj = Fn(tj) =
1

n

n
∑

i=1

1{Xi≤tj}

with expectations Rj = F (tj). These have increments rj = Pn(Aj) = 1
n

n
∑

i=1
1{Xi∈Aj} and

ρj = P (Aj) = F (tj) − F (tj−1) with intervals Aj = (tj−1, tj]. Now the covariance is 1/n

times the covariance in a single draw, so (6) holds with c = n.

Case 2: With fixed 1 ≤ n1 < n2 < · · · < nk ≤ n and ordered statistics

X(n1) ≤ X(n2) ≤ · · · ≤ X(nk)

we set tj = X(nj) and

Rj = F (X(nj))

with expectation Rj = nj/(n + 1). These have increments rj = P (Aj) and ρj = (nj −
nj−1)/(n + 1). Now, when F is continuous the joint distribution of the Rj is the Dirichlet

distribution of uniform quantiles and (6) holds for c = n + 2.

Note that in both cases we examine distribution properties of Rj −Rj which is Fn(tj)−
F (tj) in Case 1 and F (tj) − Fn(tj)n/(n + 1) in Case 2. Thus, the difference R − R is a

vector of centered cumulative distributions. In Case 1 it is the centering of the empirical

distribution at t1, . . . , tk and in Case 2 it is the centering of the hypothesized distribution

function evaluated at the quantiles X(n1), X(n2), . . . , X(nk).
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3 Tridiagonal V
−1 and its bidiagonal decomposition

We have two approaches to appreciating the relationship between the standardized cumu-

lative distribution and the chi-square statistic. In this section, we use elementary matrix

calculations to show that the inverse of the matrix V has a special tridiagonal structure,

to derive its bidiagonal decomposition and to obtain the following identity:

(R − R)τV −1(R − R) =
k+1
∑

j=1

(rj − ρj)
2

ρj

.

Whereas in the next section we revisit the matter from the geometrical perspective of

orthogonal projection.

Lemma 1. If

V =





















R1(1 − R1) R1(1 − R2) · · · R1(1 − Rk)

R1(1 − R2) R2(1 − R2) · · · R2(1 − Rk)
...

...
...

...

R1(1 − Rk) R2(1 − Rk) · · · Rk(1 − Rk)





















,

then

V −1 =



































1
ρ1

+ 1
ρ2

− 1
ρ2

0 · · · 0 0

− 1
ρ2

1
ρ2

+ 1
ρ3

− 1
ρ3

· · · 0 0

0 − 1
ρ3

1
ρ3

+ 1
ρ4

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1
ρk−1

+ 1
ρk

− 1
ρk

0 0 0 · · · − 1
ρk

1
ρk

+ 1
ρk+1



































.
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Moreover, V −1 = BτB, where

B =





































− R2√
R1R2ρ2

R1√
R1R2ρ2

0 · · · 0 0

0 − R3√
R2R3ρ3

R2√
R2R3ρ3

· · · 0 0

0 0 − R4√
R3R4ρ4

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · − Rk√
Rk−1Rkρk

Rk−1√
Rk−1Rkρk

0 0 0 · · · 0 − 1√
Rkρk+1





































.

Proof. Firstly, let us show that V V −1 = V −1V = I. Since V is symmetric, it is

enough to show V V −1 = I. In order to do this, note that for j = 1, . . . , k we have

(

V V −1
)

j,j
=

k
∑

s=1

Vj,sV
−1

s,j

= −Rj−1(1 − Rj−1)
1

ρj

+ Rj(1 − Rj)

(

1

ρj

+
1

ρj+1

)

− Rj(1 − Rj+1)
1

ρj+1

= 1,

where R0 = 0 and Rk+1 = 1. Similarly, for 1 ≤ j < l ≤ k, we have

(

V V −1
)

j,l
=

k
∑

s=1

Vj,sV
−1

s,l

= −Rl−1(1 − Rl)
1

ρl

+ Rl−1(1 − Rl−1)

(

1

ρl

+
1

ρl+1

)

− Rl(1 − Rl+1)
1

ρl+1

= 0.

It remains to show BτB = V −1. For j = 1, . . . , k it follows

(BτB)j,j =
R2

j−1

Rj−1Rjρj

+
R2

j+1

RjRj+1ρj+1

=
1

ρj

+
1

ρj+1

.

For j = 1, . . . , k − 1 we have

(BτB)j,j+1 = − Rj+1Rj
√

RjRj+1ρj+1

√

RjRj+1ρj+1

= − 1

ρj+1

.
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Finally, for l ≥ j + 2, it follows (BτB)j,l = 0. Since both of matrices BτB and V −1

are symmetric, the identity BτB = V −1 holds.

�

Corollary 1. (R − R)τV −1(R − R) =
k+1
∑

j=1

(rj−ρj)2

ρj

Proof. Note that V
−1 can be written in the following way:

V
−1

=





























1

R1

+
1

R2−R1

− 1

R2−R1

0 · · · 0 0

− 1

R2−R1

1

R2−R1

+
1

R3−R2

− 1

R3−R2

· · · 0 0

0 − 1

R3−R2

1

R3−R2

+
1

R4−R3

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1

Rk−1−Rk−2

+
1

Rk−Rk−1

− 1

Rk−Rk−1

0 0 0 · · · − 1

Rk−Rk−1

1

1−Rk

+
1

Rk−Rk−1





























Consequently, we obtain

(R − R)τV −1(R − R) =
1

R1

(R1 − R1)
2 +

1

1 − Rk

(Rk − Rk)2

+
k
∑

j=2

1

Rj − Rj−1

(Rj−1 − Rj − Rj−1 + Rj)
2

=
k+1
∑

j=1

(rj − ρj)
2

ρj

.

�

4 Projection properties

There is, of course, an invertible linear relationship between the cumulative Rj and indi-

vidual rj values via

Rj =
j
∑

i=1

ri and rj = Rj − Rj−1, j = 1, 2, . . . , k + 1.
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Accordingly, we will have the same norm-squares

cn(R − R)τV −1(R − R) and cn(r − ρ)τC−1(r − ρ)

for standardized version of the vectors R and r where C/cn is the covariance matrix of

the vector r with Ci,j = ρi1{i=j} − ρiρj. These forms use the vectors of length k, because

the value rk+1 = 1 −
k
∑

j=1
rj is linearly determined from the others. It is known (and easily

checked) that the matrix C−1 has entries (C−1)i,j = 1
ρi
1{i=j} − 1

ρk+1
for i, j = 1, 2, . . . , k

(matching the Fisher information of the multinomial) and one finds from this form that

(r − ρ)τC−1(r − ρ) is algebraically the same as

k+1
∑

j=1

(rj − ρj)
2

ρj

as stated in Neyman (1949). So this is another way to see the equivalence of expressions

(1) and (2). Furthermore, using suitable orthogonal vectors one can see how the chi-square

statistic (2) arises as the norm square of the fully standardised cumulative distributions

(3).

The chi-square value
k+1
∑

j=1

(rj−ρj)2

ρj
is the norm square ∥ ξ−u ∥2 of the difference between

the vector with entries ξj = rj√
ρj

and the unit vector u with entries
√

ρj, for j = 1, . . . , k+1.

Here we examine the geometry of the situation in R
k+1. The projection of ξ in the direction

of this unit vector has length ξτu =
k+1
∑

j=1

(

rj√
ρj

)√
ρj equal to 1. Accordingly, if q1, q2, . . . , qk

and qk+1 = u are orthonormal vectors, then the chi-square value is the squared length of

the projection of ξ onto the space orthogonal to u, spanned by q1, . . . , qk. So it is given

by
k
∑

j=1
Z2

j where Zj = ξτqj, j = 1, 2, . . . , k, or equivalently Zj = (ξ − u)τqj.

This sort of analysis is familiar in linear regression theory. A difference here is that the

entries of ξ are not uncorrelated. Nevertheless, the covariance E(ξ − u)(ξ − u)τ reduces
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to 1
cn

[I − uuτ ] since it has entries

E
(rj − ρj)(rl − ρl)√

ρjρl

=
1

cn

ρj1j=l − ρjρl√
ρjρl

which simplifies to
1

cn

(1{j=l} − √
ρj

√
ρl).

Accordingly, EZjZl = Eqτ
j (ξ − u)(ξ − u)τql = 1

cn
qτ

j (I − uuτ )ql is 1
cn
qτ

j ql equal to 0 for

j ̸= l. Thus the Zj are indeed uncorrelated and have constant variance 1
cn

. This is a

standard way in which we know that the chi-square statistic with k + 1 cells is a sum of k

uncorrelated and standardized variables (c.f. Cramer (1946), pages 416-420).

5 A convenient choice of orthogonal vectors

Here we wish to benefit from an explicit choice of the orthonormal vectors q1, . . . , qk or-

thogonal to qk+1 = u. We are motivated in this by the analysis in Stigler (1984). For

an i.i.d. sample Y1 . . . Yn from N (µ, σ2) the statistic
n
∑

j=1
(Yj − Ȳn)2 is the sum of squares

n
∑

j=2
(Yj − Ȳj−1)

2 j−1
j

of the independent N (0, σ2) innovations (also known as standardized

prediction errors) Zj = Yj−Ȳj−1
√

1+ 1

j−1

and, accordingly, this sum of squares is explicitly σ2 times

a chi-square random variable with n − 1 degrees of freedom. These innovations decorrelate

the vector of (Yi − Ȳn) using qj like those below, with ρi replaced with 1
n
. According to

Stigler (1984) and Kruskal (1946), analysis of this type originates with Helmert (1876) (cf.

Rao (1973), pp. 182–183).

The analogous choice for our setting is to let Zj = ξτqj, where the q1, . . . , qk, qk+1 are
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the normalization of the following orthogonal vectors in R
k+1











































−√
ρ1 −√

ρ1 −√
ρ1 · · · −√

ρ1
√

ρ1

R1√
ρ2

−√
ρ2 −√

ρ2 · · · −√
ρ2

√
ρ2

0 R2√
ρ3

−√
ρ3 · · · −√

ρ3
√

ρ3

0 0 R3√
ρ4

· · · −√
ρ4

√
ρ4

...
...

...
...

...

0 0 0 · · · −√
ρk

√
ρk

0 0 0 · · · Rk√
ρk+1

√
ρk+1











































.

Essentially the same choices of orthogonal qj for determination of uncorrelated components

Zj of ξ−u are found in Irwin (1949). See also Irwin (1942), as well as Lancaster (1949) and

Lancaster (1965) where the matrix from Irwin (1949) is explained as a particular member

of a class of generalizations of the Helmert matrix.

The norm of the j-th such column for j = 1, . . . , k equals

√

Rj +
R2

j

ρj+1
which is

√

RjRj+1

ρj+1
,

so that, for j = 1, . . . , k,

qj =
1

√

RjRj+1

ρj+1

[

−√
ρ1, . . . , −√

ρj,
Rj√
ρj+1

, 0, . . . , 0

]τ

and

Zj = ξτqj with ξi =
ri√
ρi

becomes

Zj =
−r1 − · · · − rj + rj+1Rj

ρj+1
√

RjRj+1

ρj+1

which is

Zj =
rj+1Rj − Rjρj+1
√

RjRj+1ρj+1
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or, equivalently, for j = 1, 2, . . . , k

Zj =
Rj+1Rj − RjRj+1
√

RjRj+1ρj+1

which are the innovations of the cumulative values Rj+1 (the standardized error of linear

prediction of Rj+1 using R1, . . . , Rj). As a consequence of the above properties of the qj,

these Zj are mean zero, orthogonal, and of constant variance 1/cn. Each of these facts

can be checked directly using ERj = Rj and using the specified form of the covariance

Cov(Rj, Rl) = 1
cn

[min(Rj, Rl) − RjRl].

To summarize this section we have presented uncorrelated components Zj of the chi-

square statistic. Moreover, we have provided interpretation of these components as inno-

vations standardizing the cumulative distribution values. It provides specific proof of the

equivalence of expressions (1), (2) and (3).

6 Large sample estimation properties

The results of previous sections will be used to discuss asymptotic efficiency of certain

minimum distance estimators related to Case 1 and Case 2 of Section 2.

Let us consider the case of i.i.d. random sample X1, . . . , Xn with distribution function

from a parametric family Fθ, θ ∈ Θ ⊆ R
p, t1 < · · · < tk, and let Rn = R and Rn = R

be as in Section 2. The vector Rn − Rn, which we denote by (Rn − Rn)(θ), can be

considered as a vector depending on the data and the parameter. Let θ0 denote the

true parameter value. If (Rn − Rn)(θ0) converges to zero in probability Pθ0
, we may

use the generalized least squares procedure for parameter estimation so that we minimize

Qn(θ) = (Rn − Rn)τ (θ)V −1(Rn − Rn)(θ) for θ ∈ Θ. Here V is the covariance matrix of

Rn − Rn evaluated at a true value θ0 or at a consistent estimator of the true value.
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Both cases from Section 2, i.e. fixed and random t1, . . . , tk considered in the estimation

context, fulfill this requirement. Indeed, for Case 1 (fixed t1 < · · · < tk) we have

Rn = [Fn(t1), . . . , Fn(tk)]τ , Fn(x) =
1

n

n
∑

i=1

1{Xi≤x},

Rn(θ) = EθRn = [Fθ(t1), . . . , Fθ(tk)]τ .

Here only the expectation Rn(θ) depends on θ. For Case 2 (random t1 < · · · < tk,

tj = X(nj)) we have

Rn(θ) = [Fθ(X(n1)), . . . , Fθ(X(nk))]
τ

Rn = [Fn(X(n1)), . . . , Fn(X(nk))]
τ n

n + 1
.

Now only the Rn(θ) depends on θ. Here Fθ0
(X(nj)) has a Beta(nj, n + 1 − nj) distribution,

Eθ0
[Fθ0

(X(nj))] = nj

n+1
= Fn(X(nj))

n
n+1

so that

Rn =
[

n1

n + 1
, . . . ,

nk

n + 1

]τ

.

In both cases, the convergence in probability Pθ0
of (Rn −Rn)(θ0) to zero is a consequence

of the form of the variances of the mean zero differences, which are (1/n)Rj(1 − Rj) in

Case 1 and (1/(n + 2))Rj(1 − Rj) in Case 2.

However, there is a difference in the analysis of estimation properties for the two men-

tioned cases. Let us discuss them separately.

Case 1. For the fixed t1 < · · · < tk. We can express the functional Qn,V (θ) as

Qn,V (θ) = [Fn(t1) − Fθ(t1), . . . , Fn(tk) − Fθ(tk)]τV −1[Fn(t1) − Fθ(t1), . . . , Fn(tk) − Fθ(tk)].

For the complete standardization we should use the matrix

Vθ = Varθ[Fn(t1) − Fθ(t1), . . . , Fn(tk) − Fθ(tk)]

14



that depends on the parameter. Results derived in Sections 3 and 4 then guaranty that

minimizing the functional Qn(θ) = Qn,Vθ
(θ) leads to the classical Pearson minimum chi-

square estimator (see e.g. Hsiao (2006) for its best asymptotically normal (BAN) distri-

bution properties and see also Amemiya (1976), Berkson (1949), Berkson (1980), Bhapkar

(1966), Fisher (1924), Taylor (1953) for more about minimum chi-square estimation). How-

ever, this estimation procedure can also be set in the framework of the generalized method

of moments (GMM). Indeed, if we use a fixed V or we use Vθ⋆ where θ⋆ is a consistent

estimator of the true parameter value instead of Vθ in the functional Qn,V (θ), then, as

shown in Benšić (2015), this estimation procedure can be seen as a GMM procedure.

Let θ̂k,n denote the estimator obtained by minimization of the functional Qn,Vθ⋆
(θ).

Refining the notation from Section 2:

Ai = (ti−1, ti], i = 1, . . . , k, Ak+1 = (tk, ∞),

Pn(Ai) = Fn(ti) − Fn(ti−1),

P ⋆(Ai) = Fθ⋆(ti) − Fθ⋆(ti−1),

P (Ai;θ) = Fθ(ti) − Fθ(ti−1)

P0(Ai) = Fθ0
(ti) − Fθ0

(ti−1),

analogous to the results of the previous sections, we see that

θ̂k,n = argmin
θ∈Θ

k+1
∑

i=1

(Pn(Ai) − P (Ai;θ))2

P ⋆(Ai)
. (7)

If classical assumptions of the generalized method of moments theory are fulfilled (see

e.g. Newey and McFadden (1994), Harris and Matyas (1999)) it is shown in Benšić (2015)

that lim
n

[nVar(θ̂k,n)] has inverse Gτ
0V

−1
0 G0 where G0 and V0 are, respectively, the matrices

15



∂
∂θτ [Fθ(t1), . . . , Fθ(tk)]τ and the covariance matrix of [Fn(t1), . . . , Fn(tk)]τ evaluated at the

true parameter value θ0.

Using the tridiagonal form for the inverse of V0 we can simplify this limit. Indeed, if the

model is regular, let S(x) = ∂
∂θ

log f(x,θ)|θ0
be the population score function evaluated at

the true parameter value. Now we have

G0 =













[Eθ0
(S1(−∞,t1])]

τ

...

[Eθ0
(S1(−∞,tk])]

τ













and

Gτ
0V

−1
0 G0 =

k+1
∑

i=1

1

P0(Ai−1)

ti
∫

ti−1

S(x)f(x;θ0) dx

ti
∫

ti−1

Sτ (x)f(x;θ0) dx

=
k+1
∑

i=1

P0(Ai−1)

ti
∫

ti−1

S(x)f(x;θ0) dx

P0(Ai−1)

ti
∫

ti−1

Sτ (x)f(x;θ0) dx

P0(Ai−1)

=
k+1
∑

i=1

P0(Ai−1)Eθ0
[S(X)|Ai−1]Eθ0

[S(X)|Ai−1]
τ .

This can be interpreted as a Riemann-Stieltjes discretization of the Fisher information

which arises in the limit of large k.

Let us note the similarity of θ̂k,n and the minimum chi-square estimator. From (7)

we see that they differ only in the denominator so we can interpret θ̂k,n as a modified

minimum chi-square. It is well known that various minimum chi-square estimators are in

fact generalized least squares (see e.g. Amemiya (1976), Harris and Kanji (1983), Hsiao

(2006)) and BAN estimators. Likewise, the norm square of standardizing the empirical

distribution has been known to also provide a generalized least squares estimator. What

was not recognized is that minimizing the norm squared of the fully standardized empirical

distribution is in the same as minimizing chi-square.
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Case 2. In this case we have tj = X(nj) so that the value Fn(tj) = nj/n is predeter-

mined. The random part Fθ(Xnj
) of Qn(θ) depends on the parameter. But the matrix

V (which should be used for complete standardization) does not depend on θ and can be

computed from uniform order statistics covariances. Now, the results from Sections 3 and

4 enable us to represent the minimizer of the functional Qk(θ) as

θ̂ = argmin
θ∈Θ

k+1
∑

i=1

((Fθ(X(ni)) − Fθ(X(ni−1))) − ni−ni−1

n+1
)2

ni−ni−1

n+1

. (8)

To discuss asymptotic properties of this estimator let us suppose that all data are different

and k = n so that the estimator can be easily recognized as a generalized spacing estimator

(GSE) (see Ghosh and Rao Jammalamadaka (2001), Cheng and Amin (1983), Ranneby

(1984)). Namely, if ni − ni−1 = 1 then

Qn(θ) = (n + 2)(n + 1)
n+1
∑

i=1

(

(Fθ(X(ni)) − Fθ(X(ni−1))) − 1

n + 1

)2

.

Obviously,

θ̂n = argmin
θ∈Θ

n+1
∑

i=1

(Fθ(X(ni)) − Fθ(X(ni−1)))
2 =

n+1
∑

i=1

h(Fθ(X(ni)) − Fθ(X(ni−1))), (9)

where h(t) = t2. Detailed discussion about conditions for consistency and asymptotic

normality for this type of estimator the interested reader can find in Ghosh and Rao

Jammalamadaka (2001). If we apply these results with h(t) = h2 it comes out that we

face a lack of BAN distribution properties with θ̂n. To illustrate this, let us suppose, for

simplicity, that θ = θ is a scalar. Theorem 3.2. from Ghosh and Rao Jammalamadaka

(2001) gives necessary and sufficient condition on h to generate GSE with minimum variance

for a given class of functions which includes h(t) = t2. It is stated there that asymptotic

variance of a GSE is minimized with h(t) = a log t + bt + c where a, b and c are constants.

Based on the results formulated in Theorem 3.1. from the same paper, it is also possible to
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calculate the asymptotic variance of the GSE for the given function h under some regular

conditions on the population density. Thus, for h(t) = t2 the expression (9), Theorem

3.1, from Ghosh and Rao Jammalamadaka (2001) equals 2, which means that asymptotic

variance of our estimator (under mild conditions on the population density) is 2
I(θ0)

, where

I(θ0) denotes Fisher information. So, for these cases θ̂n from (9) is not BAN. It is only

50% efficient asymptotically.

However, it is possible to reach the BAN distribution property for Case 2 and k = n

through an iterative procedure which includes a modification of the denominator in (8) in

each step:

1. Let

Qn(θ, θ′) =
n+1
∑

i=1

(Fθ(X(i)) − Fθ(X(i−1)) − 1
n+1

)2

Fθ′(X(i)) − Fθ′(X(i−1))
.

2. Let θ⋆ be a consistent estimator for real θ.

3.

θ1 = θ⋆

θj+1 = argmin
θ

Qn(θ, θj), j = 1, 2, . . .

To show this let us denote Fθ = [Fθ(X(1)), . . . , Fθ(X(n))]
τ , e = [1, . . . , 1]τ ∈ R

n, Gθ =

∂
∂θ

[Fθ(X(1)), . . . , Fθ(X(n))]
τ , and

Vθ =





















Fθ(X(1))(1 − Fθ(X(1))) Fθ(X(1))(1 − Fθ(X(2))) · · · Fθ(X(1))(1 − Fθ(X(n)))

Fθ(X(1))(1 − Fθ(X(2))) Fθ(X(2))(1 − Fθ(X(2))) · · · Fθ(X(2))(1 − Fθ(X(n)))
...

...
...

...

Fθ(X(1))(1 − Fθ(X(n))) Fθ(X(2))(1 − Fθ(X(n))) · · · Fθ(X(n))(1 − Fθ(X(n)))





















,
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As in Gauss-Newton’s method for nonlinear least squares, here we consider the following

quadratic approximation

θ 7→ Q̂n(θ, θj) =
(

Fθj
+ Gθj

(θ − θj) − 1

n + 1
e

)τ

V −1
θj

(

Fθj
+ Gθj

(θ − θj) − 1

n + 1
e

)

of the function θ 7→ Qn(θ, θj) =
(

Fθ − 1
n+1

e

)τ
V −1

θj

(

Fθ − 1
n+1

e

)

about the point θj.

Instead of nonlinear optimization problem min
θ

Qn(θ, θj), in every iteration we solve

simple problem min
θ

Q̂n(θ, θj), that has explicit solution. Then the corresponding iterative

procedure is given by

θj+1 = argmin
θ

(

Fθj
+ Gθj

(θ − θj) − 1

n + 1
e

)τ

V −1
θj

(

Fθj
+ Gθj

(θ − θj) − 1

n + 1
e

)

,

or explicitly

θj+1 = θj +
(

Gτ
θj
V −1

θj
Gθj

)−1
Gτ

θj
V −1

θj

(

1

n + 1
e − Fθj

)

, j = 1, 2, . . . . (10)

If we suppose that the sequence (θj) is convergent, then

Gτ
θj
V −1

θj

(

1

n + 1
e − Fθj

)

→ 0

i.e. the limit of the sequence (θj) is the solution of the equation

Gτ
θV

−1
θ

(

1

n + 1
e − Fθ

)

= 0. (11)

Let us consider the function

S(θ) =
n+1
∑

i=1

h(Fθ(X(i)) − Fθ(X(i−1))),

where h(t) = log t. Note that

S ′(θ) = Gτ
θV

−1
θ

(

1

n + 1
e − Fθ

)

,
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i.e. the condition S ′(θ) = 0 is exactly the same as equation (11). Finally, we showed

the following: if the sequence (θj) given by (10) is convergent, then it converges to the

stationary point of the function θ 7→
n+1
∑

i=1
h(Fθ(X(ni)) − Fθ(X(ni−1))), where h(t) = log t.

Here, Qn(θ, θ⋆) is algebraically the same functional as the one described in Case 1 if we

intentionally chose fixed tj to be the same as x(nj) and behave as we are in Case 1.

7 Conclusion

In previous work Benšić (2015), has been shown by simulations that fully standardizing the

cumulative distribution produces estimators that are superior to those that minimize the

Cramer-Von Mises and Anderson-Darling statistics. Now, as a result of the present work

we understand that this means advocacy of minimum chi-square estimators as superior to

estimators based on minimum distance between (unstandardized) cumulative distributions.

We have seen here that for both fixed t1, . . . , tk and quantiles ti = X(ni) the form of

the covariance of (Fn(ti) − F (ti), i = 1, . . . , k) permits simple standardization and a simple

relationship to chi-square statistic. For fixed t1, . . . , tk we also see clearly the chi-square(k)

asymptotic distribution. However, we caution that using all the empirical quantiles (k =

n, ni = i, ti = X(i)) the standardized (F (X(i)) − i
n+1

, i = 1, . . . , n) is not shown to have an

effective norm square for estimation, being only 50% efficient. A modified chi-square like

formulation is given for the empirical quantiles that is fully efficient.
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